Creating the Primordial Quark-Gluon Plasma at RHIC and the LHC

Investigate properties of hot QCD matter at T ~ 150 – 1000 MeV!

Top Ten Physics Newsmakers of 2000 – 2010

http://www.aps.org/publications/apsnews/201002/newsmakers.cfm
"Stories with the most lasting physical significance & impact in physics"

The Large Hadron Collider (LHC) – modern marvel of science, last piece of standard model.

The **Decade of Carbon** – carbon nanotubes & graphene, will revolutionize electronics.

Negative Index of Refraction Materials – meta-materials make objects seem to disappear.

The Wilkinson Microwave Anisotropy Probe – leftover heat from Big Bang.

Quantum Teleportation – quantum information transport across macroscopic distances.

Quark-Gluon Plasma – first instances after Big Bang, all matter as hot quarks & gluons.

Gravity Probe B – observed the geodetic effect (to look for frame dragging in general relativity).

Light Stopped – actually stopped altogether and stored for up to 20 milliseconds.

Direct Evidence for Dark Matter – two colliding galaxies confirm presence of dark matter.

Advances in Computing $- > 10^{15}$ calculations / sec., map bio-structures, supercomputers.

On the "First Day"

Courtesy Nat. Geographic, Vol. 185, No. 1, 1994 – Graphics by Chuck Carter Consultants – Michael S. Turner and Sandra M. Faber

Courtesy Nat. Geographic, Vol. 185, No. 1, 1994 – Graphics by Chuck Carter Consultants – Michael S. Turner and Sandra M. Faber

Behavior of **QCD*** at High Temperature

Modifications to QCD Coupling Constant α_s

Modifications to QCD Coupling Constant α_s

Nobel Prize 2004

D. Gross H.D. Politzer F. Wilczek

QCD Asymptotic Freedom (1973)

"Before [QCD] we could not go back further than 200,000 years after the Big Bang. Today...since QCD simplifies at high energy, we can extrapolate to very early times when nucleons melted...to form a quark-gluon plasma." David Gross, Nobel Lecture (RMP 05)

Quark-Gluon Plasma (Soup)

mhin

SOUP

QUARKS AND GLUONS

- **<u>Standard Model</u>** → Lattice Gauge Calculations predict **QCD** Deconfinement phase transition at T = 175 MeV
- <u>Cosmology</u> \rightarrow Quark-hadron phase transition in early Universe $\overline{}$
- <u>Astrophysics</u> \rightarrow Cores of dense stars (?)
- Can we make it in the lab?

"How Can We Make a Quark Soup?"

TEMPERATURE OF THE UNIVERSE has been falling since the big bang. During the first microsecond, all matter is thought to have existed as quark-gluon plasma. As the universe expanded and cooled, more complex matter condensed out of the plasma, eventually forming the atoms observable today.

How to Make Quark Soup!

Strong – Nuclear Force "confines" quarks and gluons to be in particles

- Compress or Heat Nuclei
- To melt the vacuum!
- → Quark-Gluon Soup !

(quarks are confined)

With the Relativistic Heavy Ion Collider (since 2000)

Gold nuclei each with 197 protons + neutrons are accelerated

With the Relativistic Heavy Ion Collider

<u>(since 2000)</u>

Gold nuclei each with 197 protons + neutrons are accelerated

STAR (Solenoidal Tracker At RHIC) Detector

$$\begin{array}{l} 0 < \phi < 2\pi \\ |\eta| < 1 \end{array}$$

at Brookhaven Lab in N.Y.

Heavy Ion Physics at the Large Hadron Collider

Service Service Service - and a service service of the service of

CMS

Distant in the second

ATLAS

Heavy Ion Physics at the Large Hadron Collider

Service of the Proper and the service of the servic

CMS

- A Dependence in the second

View from Hollywood 🥯

ATLAS

ALIÇE

LHC Heavy Ion Program

LHC Heavy Ion Data-taking

Design: Pb + Pb at $\sqrt{s_{NN}} = 5.5 \text{ TeV}$ (1 month per year) 2010-11: Pb + Pb at $\sqrt{s_{NN}} = 2.76 \text{ TeV}$ 2013 : p + Pb, $\sqrt{s_{NN}} = 5.02 \text{ TeV}$

LHC Collider DetectorsATLASCMS

ALICE

The ALICE Experiment

The LHC Experiment designed for heavy ions

Heavy Ion Collisions at RHIC & LHC

Evolution of a Heavy Ion Collision at RHIC & LHC

(Computer Simulation for RHIC)

 $red \rightarrow protons$

white \rightarrow neutrons

 $participants \rightarrow interacting p's \& n's$

The Little Bang

Ref: U. Heinz, Hard Probes Conference 2013

Original Conception – Paul Sorensen

BIG PICTURE Questions

What are the states of matter that exist at high temperature and density?

- <u>Can we explore the phase structure of a fundamental gauge (QCD) theory?</u>

 \rightarrow Can we use this to understand other gauge theories (like gravity!)?

- Is the Phase Diagram of QCD featureless above Tc?
 - \rightarrow What are the constituents (are there quasi-particles, exotic states, others)?
 - \rightarrow Is there a critical point (can it be found in a RHIC Beam Energy Scan)?

What are the properties of the QGP?

transport properties, α_s (T), sound attenuation length, sheer viscosity/entropy density, formation time (τ_f), excited modes,EOS?

Are there new phenomena,

new states of matter?

<u>Definitions</u>

Relativistic treatment
 Energy

Lorentz transforms

where,

$$E^2 = p^2 + m^2$$
 or E
 $\gamma = \frac{1}{\sqrt{1 - \beta^2}}$ and β

 $E' = \gamma (E + \beta p_z)$ $p'_z = \gamma (p_z + \beta E)$

2

$$E = T + m \qquad \mathbf{O}$$
$$\beta = \frac{v}{c} = \frac{p}{E}$$

 $E = \gamma m$

Longitudinal and transverse kinematics

$$p_{L} = p_{z}$$

$$p_{T} = \sqrt{p_{x}^{2} + p_{y}^{2}}, \quad m_{T} = \sqrt{p_{T}^{2} + m^{2}}$$
Transverse mass
$$y = \frac{1}{2} \ln \left[\frac{E + p_{L}}{E - p_{L}} \right]$$

$$y' = y + \tanh^{-1} \beta$$
Rapidity

Useful relations $\gamma = \cosh y$ $\beta = \tanh y$ $E = m_T \cosh y$ $p_L = m_T \sinh y$

 η = - ln (tan $\theta/2$)

Pseudo-rapidity

Particle Identification in ALICE Detectors

e

2

TΡ

ALICE

PERFORMANCE

18/05/2011

Pb-Pb Vs_{NN}=2.76 TeV

678910

5

20

p (GeV/c)

Particle Identification in ALICE Detectors

Vertex Identification in ALICE Detectors

1.36

1.72

"What Have We Learned" from RHIC & LHC

1) Consistent Picture of Geometry, Dynamics & Evolution of RHI Collisions

Dynamics & Evolution of RHI Collisions

Multiplicities (per participant nucleon) from RHIC to LHC vs. C.M. energy vs. # of participants

Initial state fluctuations? \checkmark Degree of shadowing? See \rightarrow data from 2013 p-Pb run!

Small differences due to initial conditions? Gluon shadowing vs geometry, Hard scattering ~ # binary collisions Are there differences at LHC & RHIC?

System Size & Lifetimes

ALICE, Phys.Lett. B696 (2011) 328

System size Lifetimes 400 (fm/c) $R_{out}R_{side}R_{long}$ (fm³) E895 2.7, 3.3, 3.8, 4.3 GeV E895 2.7, 3.3, 3.8, 4.3 GeV 12 NA49 8.7, 12.5, 17.3 GeV NA49 8.7, 12.5, 17.3 GeV 350E Λ \wedge CERES 17.3 GeV CERES 17.3 GeV ALICE ALICE 10 * STAR 62.4, 200 GeV 300F STAR 62.4, 200 GeV \$ PHOBOS 62.4, 200 GeV п PHOBOS 62.4, 200 GeV ALICE 2760 GeV 250 ALICE 2760 GeV 8 200F 6 150 4 $V_{IHC} \sim 2 \times V_{RHIC}$ 100F τ_{f} (LHC) ~ 1.4 x τ_{f} (RHIC) ! 2 50 0. 500 1000 1500 2000 10 12 2 0 4 6 8 14 ${\left< dN_{ch} / d\eta \right>}^{1/3}$ $\langle dN / d\eta \rangle$

Size \rightarrow Volume ~ dN/d η

i.e.~ multiplicity density

Lifetime $\tau_f \sim \langle dN_{ch}/d\eta \rangle^{1/3}$ τ_f (central PbPb) ~ 10 – 11 fm/c Lifetime \rightarrow hydrodynamic expansion

"What Have We Learned" from RHIC & LHC

2) Particle ratios reflect equilibrium abundances \rightarrow universal hadronization T_{critical} \rightarrow Confirm lattice predictions for T_{critical}, μ_B

Particles Formed at Universal Hadronization T

Particles yields \rightarrow equilibrium abundances \rightarrow universal hadronization T_{critical}

Confirm lattice predictions for $T_{critical}$, μ_B

"What Have We Learned" from RHIC & LHC

3) Strong flow observed \rightarrow ultra-low shear viscosity Strongly-coupled liquid \rightarrow quark-gluon plasma

How do Heavy Ion Collisions Evolve? – Beam View

1) Superposition of independent p+p:

momenta random relative to reaction plane

How do Heavy Ion Collisions Evolve?

1) Superposition of independent p+p:

momenta random relative to reaction plane

2) Evolution as a **bulk** system

Pressure gradients (larger in-plane) push bulk "out" \rightarrow flow"

more, faster particles seen in-plane

High density pressure at center

"zero" pressure in surrounding vacuum

Azimuthal Angular Distributions

1) Superposition of independent p+p: N

momenta random relative to reaction plane

2) Evolution as a **bulk** system

Pressure gradients (larger in-plane) push bulk "out" \rightarrow flow

more, faster particles seen in-plane

 $\boldsymbol{\varphi}\text{-}\Psi_{\text{RP}} \text{ (rad)}$

 ϕ - Ψ_{RP} (rad)

Large Elliptic Flow Observed at RHIC and LHC!

Large Elliptic Flow Observed at RHIC and LHC!

Elliptic Flow Saturates Hydrodynamic Limit

- Azimuthal asymmetry of charged particles:
 - $dn/d\phi \sim 1 + 2 v_2(p_T) \cos(2 \phi) + ...$

Mass dependence of v₂

Initial studies require -

- Early thermalization (0.6 fm/c)
- Ideal hydrodynamics (zero viscosity)
 - → "nearly perfect fluid"
- ε ~ 25 GeV/fm³ (>> ε_{critical})
- Quark-Gluon Equ. of State

Elliptic Flow in Viscous Hydrodynamics

 Azimuthal asymmetry of charged particles: dn/dφ ~ 1 + 2 v₂(p_T) cos (2 φ) + ...

Mass dependence of v₂ Viscous hydrodynamics - CGC Initial State **Early thermalization** (0.5 fm/c) Shear viscosity / entropy (η/s ~ 0.2) → still "nearly perfect fluid" • $\varepsilon >> \varepsilon_{critical}$

It's a Strongly-Coupled Medium with Ultra-Low Shear Viscosity

Viscous hydrodynamics calculations: Schenke, et al. PRL 106 (2011) 042301 $\rightarrow 1 /4\pi < \eta/s < 1 /2\pi$

> Universal lower bound on shear viscosity / entropy ratio (η /s) $\rightarrow \eta$ /s = 1 / 4 π for the "perfect liquid"

The strong-coupling limit of non-Abelian gauge theories with a gravity dual (ref: Kovtun, Son, Starinets, PRL 94, 111601 (2005))

Universality of Classical Strongly-Coupled Systems?

-> Atoms, sQGP, ... AdS/CFT (String Theory) K.M. O'Hara et al Science 298 (2002) 2179

<u> Ultra-low (Shear)Viscosity Fluids</u>

Quantum lower viscosity bound: $\eta/s > 1/4\pi$ (Kovtun, Son, Starinets)

from strongly coupled N = 4 SUSY YM theory.

3-d Rel. Hydro describes RHIC/LHC v₂ data with $\eta/s \sim 1/2\pi$ near lower bound!

Event-by-Event Initial Conditions Vary!

Initial conditions vary event-to-event. Ideal $\eta/s = 0$ $\eta/s = 0.16 (1/2\pi)$ Overlap region (1 event): Kowalski, $t = 0.5 \, \text{fm/c}$ Hydro evolution Lappi, Venugopalan, PRL 100:022303 of overlap region: Schenke, et al. PRL 106:042301 **Final observation Final observation** n=2

Azimuthal RHI harmonics provide information on viscous damping & spatial correlations:

 $N_{pairs} \propto 1 + 2v_1^2 \cos \Delta \varphi + 2v_2^2 \cos 2\Delta \varphi + 2v_3^2 \cos 3\Delta \varphi + 2v_4^2 \cos 4\Delta \varphi + \dots$

n=3

<u> Higher Order Harmonics — Probe Properties</u>

Higher order harmonics provide extent to which initial inhomogeneity propagates thru the QGP: $N_{pairs} \propto 1 + 2v_1^2 \cos \Delta \varphi + 2v_2^2 \cos 2\Delta \varphi + 2v_3^2 \cos 3\Delta \varphi + 2v_4^2 \cos 4\Delta \varphi + ...$

Higher Order Components at LHC and RHIC

Identified Hadron Elliptic Flow Complicated

Complicated $v_2(p_T)$ flow pattern is observed for identified hadrons \rightarrow $d^2n/dp_Td\phi \sim 1 + 2 v_2(p_T) \cos (2 \phi)$

If flow established at quark level, it is predicted to be simple \rightarrow KE_T \rightarrow KE_T / n_q, v₂ \rightarrow v₂ / n_q, n_q = (2, 3 quarks) for (meson, baryon)

Large Elliptic Flow Observed at RHIC and LHC!

Predicted by hydrodynamics with very low shear viscosity Azimuthal asymmetry of particles: $dn/d\phi \sim 1 + 2 v_2(p_T) \cos (2 \phi) + ...$

Increase in v_2 from RHIC to LHC

If baryons and mesons form from independently flowing quarks then quarks are deconfined for a brief moment (~ 10 ⁻²³ s), then hadronization!

"What Have We Learned" from RHIC & LHC

4) QGP radiation (thermal photons)
 → exhibit time-integrated temperatures >> T_{critical}

Low mass di-leptons (virtual photons) → broadening of mass spectrum → medium modifications?

Thermal Photons – Shining of the QGP

Properties of Medium – Virtual Photons

Virtual photons – Di-leptons

Medium modification of resonance & hadron masses

Initial studies at SPS \rightarrow Chiral symmetry restoration?

<u>Centrality dependence:</u> PHENIX, PRC81, 034911(2010), arXiv:0912.0244

Virtual photons from decays in QGP Must subtract all hadronic decays outside medium (scale pp data)

Low mass di-lepton enhancement! The original case for medium effects! Increases with centrality.

> Space-time evolution? Shuryak, arXiv:1203.1012v1

Low Mass Di-Leptons at RHIC LHC...?

Low Mass Di-Leptons at RHIC – Lower Energies

Beam Energy Scan shows low mass enhancement at all $\sqrt{s_{_{NN}}}$ ρ melting sensitive to total baryon density not net baryon density model describing data include chirally symmetric phase

"What Have We Learned" from RHIC & LHC

5) Baryon-Meson Anomaly? \rightarrow Another mechanism producing hadrons at $p_T < 7$ GeV/c (i.e. not parton fragmentation!)

<u>π, K, p: Baryon-Meson Anomaly & Suppression</u>

Baryon / meson ratio (p/ π and Λ/K^0_s)

 $1.5 < p_T < 8 \text{ GeV/c}$

Increases for more central collisions Peripheral Pb-Pb similar to pp

 \rightarrow Effects of medium? Quark recombination? Radial flow? Stan's? p_T > 8 GeV/c

No dependence on centrality / system → Parton fragmentation (unmodified)

Baryon-Meson Anomaly – ALICE & STAR

Radial flow?

Baryon / meson ratio (p/π and Λ/K_s^0) 1.5 < p_T < 8 GeV/c Increases for more central collisions Peripheral Pb-Pb similar to pp

 \rightarrow Effects of medium? Quark recombination?

Stan's?

<u>"What Have We Learned" from RHIC & LHC</u>

- 1) Consistent Picture of Geometry, Dynamics and Evolution of RHI Collisions
- 2) Particle ratios \rightarrow equilibrium abundances \rightarrow universal hadronization T_{critical} Confirm lattice predictions for T_{critical}, μ_B
- 3) It has characteristics of a quark-gluon plasma Flows with ultra-low shear viscosity Strongly-coupled liquid
- 4) QGP radiation (thermal photons) → time-integrated temperatures >> Tcritical Low mass di-leptons (virtual photons) → in-medium modification?
- 5) Baryon-meson anomaly \rightarrow

Hadron production not fragmentation for $p_T < 7$ GeV/c

<u>Next Monday</u>: Using Hard Probes to Investigate the QGP The Real Impact of the LHC!